Recommended Speeds (SFM) For Threading With Horizon Carbide Inserts							
Material Group	Material Specs.	C23	123	156	310	323 & 323F	356
Aluminum	2024, 6061, 7075	Maximum SFM	Maximum SFM	Maximum SFM			
Copper, Brass, Bronze	Most Alloys	200-600	300-800		-	-	
Low Carbon Steels	1018, 1025, 1117, 12L14		300-500	400-650	200-300	300-600	450-750
Medium Carbon Steels	1045, 1070, 1144,		300-450	350-600	200-300	300-500	450-700
Alloy Steels	4130, 4140, 8620		250-450	350-550	200-300	300-500	400-650
Alloy Steels 28 Rc+	4150, 4340, 52100		250-400	300-500	200-275	300-450	350-600
Stainless Steels	303, 304, 410, 416		225-400	250-350	200-300	250-450	250-500
Stainless Steels	316, 316L, 422,17-4PH		200-375	200-300	150-275	225-400	225-450
Titanium - CP	Commercially Pure	150-300	200-400		200-300	250-500	
Titanium - Alloys	6AL-4V, 5AL-2.5SN	100-200	100-225		100-250	150-275	
Nickel / Cobalt Alloys	Monel, Invar, Kovar	100-250	100-300		100-300	100-300	
High Temp Alloys	Inconel, Hastelloy, A286	75-150	100-150		75-200	100-200	
Cast Iron 150-325 BHN	Class 20, 30, 35, 40	200-300	200-600		100-300	250-600	
Cast Iron 375-450 BHN	Class 50, 55, 60	150-250	150-450		100-250	200-500	
Alloy / Ductile Iron	60-40-18, 80-55-06	100-250	150-400	200-400	100-300	250-450	300-500

Threading Guidelines For CNC Lathes

1. Start near the top of the SFM range for the material being threaded.

Higher SFM reduces Built-up Edge, the major cause of poor tool life in threading. For Harder or more Abrasive Materials start in the Middle of the SFM range. Once setup is complete SFM can be adjusted for optimum tool life. Tough Micrograin Grade 310 reduces insert chipping from edge build-up at lower SFM and on parts under 1" Diameter.

Formulas to calculate Revolutions Per Minute (RPM) and Surface Feet Per Minute (SFM) :

RPM = SFM x 12 Divided by Part Diameter x 3.1416 SFM = 3.1416 x Part Diameter, Divided by 12 x RPM

2. Use the G76 Threading Cycle with Fanuc, Yasnac and similar CNC controls.

If P1, P2, P3, & P4 parameters are available, use P1 for most applications. G76 - P1 removes equal amounts of material with every pass. P2 alternates between front & back cutting edges and should only be used on 6 tpi & coarser threads.

3. Set Depth of Cut for the First Pass at 20% to 30% of the Thread Height Per Side.

G76 controls the depth of cut for the remaining passes. To find the DOC for the 1st Pass multiply the PITCH by .6 to get the approximate THREAD HEIGHT. Multiply THREAD HEIGHT by 20 - 30% to get the DEPTH of the 1st Pass. Use less than 20% when threading hard materials or larger thread pitches. Don't use "Spring Passes" under .002 DOC Per Side!

Example for calculating the DOC for the first pass on a 1/2-20 thread:

1" ÷ 20 = .050 PITCH), (.050 x .6 = .030 (THREAD HEIGHT), .030 x .3 = .009 (DEPTH OF 1st PASS)

4. Use the A55 Parameter to set the Infeed Angle.

Most CNC Lathe Controls offer a choice of A60, A55, A30 & A29. A60 is the default setting. A55 is equivalent to setting the compound feed on a manual lathe to 27.5°. In most applications A55 will double or triple tool life over A60. See below:

HORIZON CARBIDE TOOL, INC.

Flank Feed - A60

(480) 968-0957

Mod. Flank Feed - A55

Alternating Feed - P2

FAX (480) 968-8042

info@horizoncarbide.com